Gaussian and Sparse Processes Are Limits of Generalized Poisson Processes

نویسندگان

  • Julien Fageot
  • Virginie Uhlmann
  • Michael Unser
چکیده

The theory of sparse stochastic processes offers a broad class of statistical models to study signals. In this framework, signals are represented as realizations of random processes that are solution of linear stochastic differential equations driven by white Lévy noises. Among these processes, generalized Poisson processes based on compoundPoisson noises admit an interpretation as random L-splines with random knots and weights. We demonstrate that every generalized Lévy process—from Gaussian to sparse—can be understood as the limit in law of a sequence of generalized Poisson processes. This enables a new conceptual understanding of sparse processes and suggests simple algorithms for the numerical generation of such objects. Index Terms Sparse stochastic processes, compound-Poisson processes, L-splines, generalized random processes, infinite divisibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A unified formulation of Gaussian vs. sparse stochastic processes - Part I: Continuous-domain theory

We introduce a general distributional framework that results in a unifying description and characterization of a rich variety of continuous-time stochastic processes. The cornerstone of our approach is an innovation model that is driven by some generalized white noise process, which may be Gaussian or not (e.g., Laplace, impulsive Poisson or alpha stable). This allows for a conceptual decouplin...

متن کامل

ADK Entropy and ADK Entropy Rate in Irreducible- Aperiodic Markov Chain and Gaussian Processes

In this paper, the two parameter ADK entropy, as a generalized of Re'nyi entropy, is considered and some properties of it, are investigated. We will see that the ADK entropy for continuous random variables is invariant under a location and is not invariant under a scale transformation of the random variable. Furthermore, the joint ADK entropy, conditional ADK entropy, and chain rule of this ent...

متن کامل

A Unified Formulation of Gaussian Versus Sparse Stochastic Processes - Part I: Continuous-Domain Theory

We introduce a general distributional framework that results in a unifying description and characterization of a rich variety of continuous-time stochastic processes. The cornerstone of our approach is an innovation model that is driven by some generalized white noise process, which may be Gaussian or not (e.g., Laplace, impulsive Poisson, or alpha stable). This allows for a conceptual decoupli...

متن کامل

Modeling Sparse Generalized Longitudinal Observations With Latent Gaussian Processes

In longitudinal data analysis one frequently encounters non-Gaussian data that are repeatedly collected for a sample of individuals over time. The repeated observations could be binomial, Poisson or of another discrete type or could be continuous. The timings of the repeated measurements are often sparse and irregular. We introduce a latent Gaussian process model for such data, establishing a c...

متن کامل

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1702.05003  شماره 

صفحات  -

تاریخ انتشار 2017